

I. Trajectory Repairing

Scope: Autonomous vehicles must comply with traffic rules. Once traffic rule violations of an initially-planned trajectory are detected, replanning a complete trajectory is often unnecessary and time-consuming. To solve this problem, we propose to repair the initial trajectory.

• state of time-to-violation: the first time step at which the trajectory violates traffic rules Istate of time-to-comply: the last time step for which a rule-compliant trajectory exists

IV. Lazy SMT-based Solution

- Boolean Abstraction: abstracting temporal logic formulas to Boolean propositional formulas in conjunctive normal form
- **SAT-Solver**: determining the solution that satisfies the Boolean formula
- T-Solver: checking the satisfiability of the obtained assignment from SAT-solver in a trajectory-repairing framework
 - Time-To-Comply Search: simulating rule-compliant maneuvers using a pointmass vehicle model such as time-to-brake (TTB), time-to-kickdown (TTK), timeto-steer (TTS), and time-to-maintain-velocity (TTMV)

- Optimization-based Repairing: solving convex linear-quadratic programs including the robustness degree of temporal logic specifications as an objective

Rule-Compliant Trajectory Repairing using Satisfiability Modulo Theories

Yuanfei Lin and Matthias Althoff Cyber-Physical Systems Group, Technical University of Munich

MTL formula φ is defined as:

 $\varphi \coloneqq \top \mid \sigma \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \land \varphi_2 \mid \mathbf{P}\varphi \mid \mathbf{O}_I\varphi \mid \mathbf{G}_I\varphi.$

- **Rule R_G1** Safe distance to preceding vehicle:
- **Rule R_G2** Unnecessary braking:
- Rule R G3 Maximum speed limit:

 $(x_{eqo}: state of ego vehicle, x_b: state of the rule relevant vehicle, \Omega: environment model)$

All our scenarios are available at commonroad.in.tum.de, which provides open-source benchmarks for trajectory planning/repairing.

initial trajectory

{yuanfei.lin, althoff}@tum.de This work was partially supported by the German Federal Ministry for Digital and Transport (BMDV) within the project *Cooperative Autonomous Driving with Safety Guarantees* (KoSi).

II. Traffic Rule Formalization

Definition (Metric Temporal Logic (MTL)) Given a propositional variable σ , an associated interval I, the temporal previously, once, and globally operator \mathbf{P} , \mathbf{O}_I , and \mathbf{G}_I , an

 $\mathbf{G}(\text{in_same_lane}(x_{ego}, x_b) \land \text{in_front_of}(x_{ego}, x_b) \land \neg \mathbf{O}_{[0, t_c]}(\text{cut_in}(x_b, x_{ego}))$ $\wedge \mathbf{P}(\neg \mathrm{cut_in}(x_b, x_{ego}))) \Rightarrow \mathrm{keeps_safe_distance_prec}(x_{ego}, x_b))$

 $\mathbf{G}(\text{brakes_abruptly}(x_{ego}) \Rightarrow \text{braking_justification}(x_{ego}, \Omega))$

 $G(\text{keeps_lane_speed_limit}(x_{ego}) \land \text{keeps_type_speed_limit}(x_{ego}) \land$ keeps_fov_speed_limit(x_{ego}) \land keeps_braking_speed_limit(x_{ego}))

.

Definition (Satisfiability Modulo Theories (SMT)) SMT is about checking the satisfiability of formulas with respect to decidable background theories by combining Boolean satistifiability (SAT) solving and theory-specific decision procedures (T-solver).

satisfiable

Comparison to trajectory replanning:

Co

Evaluation with the highD dataset on over 1,000 rule violating trajectories:

- R_G
- R_G
- R_G

We present the first work to repair trajectories violating traffic rules formalized in MTL, which

repaired trajectory

III. Satisfiability-Modulo-Theories

VI. Conclusions

mputation Time in ms	R_G1	R_G2	R_G3
Repairing	223	168	147
Replanning	887	399	398

31	_	99.6%
32		96.1%
33		100.0%

Repairability rate in %

bridges temporal logic formulas with satisfiability checking technologies;

• reuses the rule-violating planned result to generate repaired trajectories efficiently;

 utilizes MTL robustness degree as a heuristic for the SMT paradigm and an optimization objective for traffic rule satisfaction.

common RC/D